PredictMod: Difference between revisions
Lorikrammer (talk | contribs) Created page with "PredictMod" |
Lorikrammer (talk | contribs) mNo edit summary |
||
Line 1: | Line 1: | ||
PredictMod | PredictMod (<nowiki>https://hivelab.biochemistry.gwu.edu/predictmod</nowiki>) is an application designed to predict the outcome of an intervention prior to a patient initiating treatment. Through the use of the open-source PredictMod platform, clinicians, patients, and researchers will access predictive ML models based on real-world data. The platform empowers users with limited experience in bioinformatics to leverage the power of predictive modeling, providing a collaborative solution for improving patient outcomes. This resource aims to provide clinicians with a powerful decision-making tool that enhances clinical understanding of patient-level data. The PredictMod platform utilizes ML tools and complex datasets based on EHR, gut microbiome, and other -omics data to forecast patient outcomes, often in response to treatment for a particular condition. While our primary condition of interest is Prediabetes, the tool is designed to be used for a variety of conditions, interventions, and data types. The agnostic nature of the platform allows for widespread use and relevance to all fields within the scope of medicine. |
Revision as of 19:21, 17 December 2024
PredictMod (https://hivelab.biochemistry.gwu.edu/predictmod) is an application designed to predict the outcome of an intervention prior to a patient initiating treatment. Through the use of the open-source PredictMod platform, clinicians, patients, and researchers will access predictive ML models based on real-world data. The platform empowers users with limited experience in bioinformatics to leverage the power of predictive modeling, providing a collaborative solution for improving patient outcomes. This resource aims to provide clinicians with a powerful decision-making tool that enhances clinical understanding of patient-level data. The PredictMod platform utilizes ML tools and complex datasets based on EHR, gut microbiome, and other -omics data to forecast patient outcomes, often in response to treatment for a particular condition. While our primary condition of interest is Prediabetes, the tool is designed to be used for a variety of conditions, interventions, and data types. The agnostic nature of the platform allows for widespread use and relevance to all fields within the scope of medicine.