BioMuta pipeline README

From HIVE Lab
Jump to navigation Jump to search
Under construction

This article is still under construction and should not be nominated for deletion.

Originally updated by Ned Cauley (August 2022); currently maintained by Maria Kim (September 2024).

This page will contain an updated version of this BioMuta documentation page.

Description

The Biomuta pipeline gathers mutation data from various sources and combines them into a single dataset under common field structure.

The sources included in BioMuta are:

BioMuta gathers mutation data for the following cancers:

  • Urinary Bladder Cancer (DOID:11054)
  • Breast Cancer (DOID:1612)
  • Colorectal (DOID:9256)
  • Esophageal Cancer (DOID:5041)
  • Head and Neck Cancer (DOID:11934)
  • Kidney Cancer (DOID:263)
  • Liver Cancer (DOID:3571)
  • Lung Cancer (DOID:1324)
  • Prostate Cancer (DOID:10283)
  • Stomach Cancer (DOID:10534)
  • Thyroid Gland Cancer (DOID:1781)
  • Uterine Cancer (DOID:363)
  • Cervical Cancer (DOID:4362)
  • Brain Cancer (DOID:1319)
  • Hematologic Cancer (DOID:2531)
  • Adrenal Gland Cancer (DOID:3953)
  • Pancreatic Cancer (DOID:1793)
  • Ovarian Cancer (DOID:2394)
  • Skin Cancer (DOID:4159)

Running the Pipeline

To run the BioMuta pipeine, download the scripts from the HIVE Lab github repo: GW HIVE BioMuta Repository.

Pipeline Overview

Step 1: Download

In the downloader step, mutation lists will be downloaded from each source. Refer to each individual source below for downloading instructions.

Download: TCGA

Annotated variant files are downloaded from the ISB-CGC Big Query repository.

Field descriptions for Big Query output available in field_names_descriptions.csv. Additional field descriptions available on GDC docs.

The list of studies used in TCGA can be found here: List of TCGA studies.

Gain access to data

There are two parts to obtaining data from TCGA:

1. Primary TCGA data

2. TCGA controlled-access data

  • Hosted at dbGaP. For information on how to get access, see Sharepoint.

Run downloader R script using R Studio

Required script: TCGA_mutation_download.R

Run each line one after the other, instead of the whole script at once.

Running library(bigrquery) and calling this library with bq_project_query() (later in the script) will open a browser to login with Google credentials.

  • Use the Google account registered for a ISB-CGC project and with dbGaP authorization.
  • After logging in, a token will be saved so that you can login through R Studio instead.

This script will download all mutation data for TCGA.

Since the downloaded file is very large, there might be issues running this script. If this is the case, run the following scripts in the tcga folder:

These scripts will download a set of the TCGA studies, so that the downloaded file size is smaller.

Additional information can be found here: TCGA Additional Information.

Download: CIViC

A VCF for the monthly relaease of accepted variants was downloaded from: https://civicdb.org/releases/main

Download: COSMIC

There are three COSMIC mutation datasets for coding mutations:

  • COSMIC Complete Mutation Data (Targeted Screens)
A tab separated table of the complete curated COSMIC dataset (targeted screens) from the current release. It includes all coding point mutations, and the negative data set.
  • COSMIC Mutation Data (Genome Screens)
A tab separated table of coding point mutations from genome wide screens (including whole exome sequencing).
  • COSMIC Mutations Data
A tab separated table of all COSMIC coding point mutations from targeted and genome wide screens from the current release.

The COSMIC Mutations Data set was chosen because it combines both the Targeted and Genome Screens.

Downloaded File: COSMIC_SNPs_June_2022.tsv

NOTE Downloading the mutation datasets requires a COSMIC login. With an academic email address, an account can be created for free and the download can be performed.

Fields

The COSMIC dataset contains a large number of fields, many of which were filtered out in order to speed up processing in subsequent steps.

A ‘simplified’ version of the file was used by selecting specific columns from the original downloaded file using the command line tool **awk**

Fields in Simplified Version

Field Name Example
Accession Number ENST00000404621.5
Sample name H_LV-3334-1316090
Primary site breast
Mutation CDS c.644C>G
Mutation AA p.S215*
Mutation genome position 12:1244466234-124466234

All Fields from COSMIC and Field Descriptions

From 'File Description' drop down menu below 'Cosmic Mutation Data' (on downloads page):

Field Name Description
Gene name The gene name for which the data has been curated.
Accession Number The transcript identifier of the gene.
Gene CDS length Length of the gene (base pair) counts.
HGNC id If gene is in HGNC, this id helps linking it to HGNC.
Sample name Sample id, Id tumor A assigned.
Primary Site The primary tissue/cancer from which the sample originates.
Site Subtype 1 Further sub classification (level 1) of the sample’s tissue.

Download: ICGC

A VCF for release 28 was downloaded from https://dcc.icgc.org/releases/release_28/Summary

Downloaded File: simple_somatic_mutation.aggregated.vcf.gz

Step 2: Convert

In the convert step, all resources are formatted to the Biomuta standard for both data and field structure.

For each resource, a unique script is used to convert from the raw format provided by the resource, to a format aligned with past versions of the Biomuta pipeline.

With a common format, all resources can then be combined into a master dataset.

See the individual resource pages for details on the conversion:

Convert: TCGA

Scripts

  • process_tcga_download.py

Procedure

Run process_tcga_download.py

Summary

The python script `process_tcga_download.py` will take the output of the TCGA download step and:

  • Map the data to:
 * uniprot accession
 * doid parent terms
  • Rename fields
  • Reformat fields:
 * amino acid change and position
 * chromosome id
  • Filter out unnecessary fields

Script Specifications

The script must be called from the command line and takes specific command line arguments.

Input

  • -i: A path to the input csv to reformat
  • -m: A path to the folder containing all mappings
  • -d: A path to the tcga study to doid mapping file
  • -e: A path to the ENSP to uniprot mapping file
  • -o: A path to the output folder

Output

  • A data report comparing new AA sites to old AA sites for Biomuta

Usage

  • `python process_tcga_download.py -h`
 *Gives a description of the necessary commands*
  • `python process_tcga_download.py -i <path/input_file.vcf> -m <path/> -d <doid_mapping.csv> -e <ensp_mapping.csv> -o <path/>`
 *Runs the script with the given input TCGA CSV and outputs a formatted CSV*

Additional Notes

All the mapping files are available in the repository folder: `pipeline/convert_step2/mapping`

The mapping files used for converting TCGA are:

DOID:

  • `tcga_doid_mapping.csv`

TCGA Projects were mapped to DOID parent terms using the following table (generated from previous Biomuta mapping):


DO_slim_id DO_slim_name TCGA_project
DOID:5041 esophageal cancer TCGA-ESCA
DOID:2531 hematologic cancer TCGA-DLBC
DOID:9256 colorectal cancer TCGA-READ
DOID:1319 brain cancer TCGA-GBM
DOID:1319 brain cancer TCGA-LGG
DOID:1781 thyroid cancer TCGA-THCA
DOID:11054 urinary bladder cancer TCGA-BLCA
DOID:363 uterine cancer TCGA-UCEC
DOID:169 neuroendocrine tumor TCGA-PCPG
DOID:4362 cervical cancer TCGA-CESC
DOID:363 uterine cancer TCGA-UCS
DOID:3277 thymus cancer TCGA-THYM
DOID:3571 liver cancer TCGA-LIHC
DOID:11934 head and neck cancer TCGA-HNSC
DOID:2174 ocular cancer TCGA-UVM
DOID:4159 skin cancer TCGA-SKCM
DOID:9256 colorectal cancer TCGA-COAD
DOID:3953 adrenal gland cancer TCGA-ACC
DOID:1793 pancreatic cancer TCGA-PAAD
DOID:2994 germ cell cancer TCGA-TGCT
DOID:1324 lung cancer TCGA-LUSC
DOID:1790 malignant mesothelioma TCGA-MESO
DOID:2394 ovarian cancer TCGA-OV
DOID:1115 sarcoma TCGA-SARC
DOID:263 kidney cancer TCGA-KIRP
DOID:263 kidney cancer TCGA-KICH
DOID:10534 stomach cancer TCGA-STAD
DOID:2531 hematologic cancer TCGA-LAML
DOID:10283 prostate cancer TCGA-PRAD
DOID:1324 lung cancer TCGA-LUAD
DOID:1612 breast cancer TCGA-BRCA
DOID:263 kidney cancer TCGA-KIRC
DOID:263 kidney cancer TCGA-KICH

Uniprot Accession:

  • `human_protein_transcriptlocus.csv`

Peptide ID (starts with ENSP) was mapped to uniprot isoform accession.

  • Mapping was NOT performed to uniprot canonical accession as this resulted in an issue with the final dataset in which a mutation for the same canonical accession would be listed with different amino acid changes.*

Step 3: Combine

In the combined step, all resources are combined into a master dataset.